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Abstract: Diagnostic networks are complex systems that include both laboratory-tested and community-
based diagnostics, as well as a specimen referral system that links health tiers. Since diagnostics are
the first step before accessing appropriate care, diagnostic network optimization (DNO) is crucial to
improving the overall healthcare system. The aim of our review was to understand whether the field of
DNO, and especially route optimization, has benefited from the recent advances in geospatial modeling,
and notably physical accessibility modeling, that have been used in numerous health systems assessment
and strengthening studies. All publications published in English between the journal’s inception and
12 August 2021 that dealt with DNO, geographical accessibility and optimization, were systematically
searched for in Web of Science and PubMed, this search was complemented by a snowball search.
Studies from any country were considered. Seven relevant publications were selected and charted, with
a variety of geospatial approaches used for optimization. This paucity of publications calls for exploring
the linkage of DNO procedures with realistic accessibility modeling framework. The potential benefits
could be notably better-informed travel times of either the specimens or population, better estimates of
the demand for diagnostics through realistic population catchments, and innovative ways of considering
disease epidemiology to inform DNO.

Keywords: diagnostic network optimization; physical accessibility; referral system

1. Introduction

The importance of attaining Universal Health Coverage, a key target of the 2030
Sustainable Development Goals no. 3, is no longer contested [1]. Countries commit to
ensuring access to affordable and quality healthcare services. A major component in
achieving this goal is to consider access to diagnostic services. Indeed, essential diagnostics
are the first step towards accessing appropriate care, influencing 70% of health decisions [2].
By prescribing the appropriate treatment, diagnostics help reduce excessive drug use,
thereby reducing the emergence of antimicrobial resistance and also minimizing financial
losses. In addition, they are essential for the early detection of diseases, enabling the
monitoring and control of the spread and emergence of infectious diseases [2,3]. A recent
study [4] on 10 low- and middle-income countries (LMICs) showed that major gaps in
diagnostic availability exist in some of these countries, particularly at the primary care
level. Another recent publication on nine LMICs and two states in the USA shows that
access to laboratory tests other than malaria and HIV are relatively low, with only 10–20%
of the population covered [5].

To obtain a comprehensive view of their availability, access, and use, diagnostics must
be placed in their overall context. Diagnostic networks encompass all the components,
considering not only tests performed within laboratories, but also those conducted by
devices located in communities or clinics, outside the laboratory setting, as well as the
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specimen referral system, which links referral and reference sites [6]. Initially based on
manual methods and expert consensus, the design and planning of diagnostic networks
has recently moved towards a greater use of advanced digital tools and data analytics,
notably using models link to Geographic Information Systems (GIS), targeting “diagnos-
tic network optimization” (DNO, see [6] and references therein). DNO usually implies
mathematically solving the best combination of variables to optimize outputs such as costs,
capacity, turnaround time of results and device placements. A sub-branch of DNO, route
optimization (RO), also aims to highlight the best routes for specimen referral. The ultimate
goal of DNO is usually to maximize accessibility to testing centers for the population,
while minimizing overall costs, subject to country-specific constraints and assumptions
applied. [6–8].

Consideration of the infrastructure that facilitates the transport of specimens (e.g.,
roads), obstacles that impede this transport (e.g., rivers, forests), and also transport modes
and speeds that provide information on how specimens are transported between sites
can make route optimization and other accessibility models more realistic, especially in
LMICs [9,10]. Although these analyses typically do not include costs, accurate transport
modes and speeds determined by experts in the field provide better estimates of parameters
for accessibility models [9,10]. Such approaches have also been used to model population
accessibility to health services, such as primary healthcare [11], emergency obstetric and
neonatal care [12,13], and community health services [14]. Although this dimension is not
currently part of the DNO, it may provide an interesting additional functionality that could
be added in the future. For this reason, population accessibility has been considered in
this review.

Given the recent emergence of DNO and the recent advances in applying accessibility
modelling in the framework of numerous other health services, the aim of our scoping
review is to determine if and how physical accessibility has been used to inform the
optimization of diagnostic networks. We only consider diseases that can be identified with
a diagnostic device, requiring a specimen to be collected, enabling an overall review of
diagnostic networks.

2. Materials and Methods

We followed the scoping review methodology recommended by Arksey and O’Malley [15],
and we adhered to the 2020 PRISMA guidelines [16].

2.1. Eligibility Criteria

All publications involving assessment or optimization of diagnostics networks through
the use of distance- or time-based metrics, or using concepts linked to physical accessibility
to the network or population accessibility, were included in the selection process. We
targeted journal articles, book chapters, short communications, or presentations written in
English. Studies taking place either in high-income or low- and middle-income countries
were kept, although at the end of the selection process, these two sets were treated distinctly.
All studies that could not be related to at least one diagnostic or that did not use geospatial
analyses or optimization strategies were excluded.

2.2. Search Strategy

As we targeted studies involving geographical accessibility and diagnostic network
optimization, we first identified four keyword groups: (1) Accessibility, (2) Geographical,
(3) Diagnostics, and (4) Optimization. A preliminary literature review, as well as a dis-
cussion among co-authors, allowed the identification of keywords within each category.
Thus, the keywords access, travel time, distance and transport time have been used to describe
accessibility. To ensure that emerging studies have a spatial dimension and to consider
only physical accessibility, the keywords geographic, geospatial, spatial, geographic informa-
tion system, and GIS were used. For diagnostics, it was particularly important to capture
the associated network dimension in order to avoid retaining numerous purely medical
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publications. Specimen transport, an important factor inherent to diagnostic networks,
was also emphasized by using the keywords diagnostic network, diagnostic service, diagnostic
system, sample transport network, sample transport system, route optimization, hub and spoke,
and turnaround time. Finally, to ensure that the publications contain an optimization effort,
the keywords optimize, improve, design, maximize, and cost-efficiency were used in the search
strategy. The final detailed search queries are found in Supplementary Material File S1. The
search was launched in PubMed and Web of Science on 21 May 2021. New publications
were verified until 12 August 2021. Following the database search, manual and snowball
searches were conducted, adding publications to the selection process.

2.3. Publication Selection

All publications resulting from the search process were exported to Microsoft Excel
version 2016 [17]. Duplicates were removed. Two co-authors (NR and CC) screened the
titles and abstracts of the articles and independently selected those that met the eligibility
criteria. Results were compared and disagreements discussed among the co-authors. If a
consensus was not found, the article was selected for full text reading.

2.4. Charting the Data

All selected publications were fully read by CC, and all-important pieces of informa-
tion summarized in a table containing the following fields: authors, journal, study design,
country, subnational region, geographical aggregation, time period, diseases concerned,
diagnostic type, tier level or referral, optimization solution, accessibility measures, and
units (Table S1).

3. Results
3.1. Overview of the Literature Search

The search process resulted in the identification of 136 articles. A total of 35 dupli-
cates were removed. After the evaluation of the titles and abstracts, 23 publications were
retained. Many publications were related to the optimization of waste treatment (n = 14) or
focused only on the genomic aspects of diagnostics (n = 10) and were discarded. At this
stage, 17 other publications, from manual and snowball searches, were added. A total of
40 publications were fully read. Seven research papers were finally included (Figure 1).
Publication dates for these articles range from 2014 to 2021.

3.2. Disease and Associated Diagnostics

Two publications addressed Tuberculosis, both considering GeneXpert diagnostic
devices. Three publications dealt with HIV, with one study examining disease detection
with CD4 diagnostic tools, and two studies focusing on antiretroviral therapy and viral
load. Another publication dealt with lower respiratory tract infections, by testing C-reactive
protein. The latest publication focuses on Onchocerciasis, a neglected tropical disease.

3.3. Geographical Patterns of Studies

The studies targeted seven different countries including Ghana [18], Zambia [8,19],
Lesotho [20], South Africa [21], Democratic Republic of the Congo, and Angola [22]. Finally,
the only study based on a high-income country was conducted in the UK. Four of these
studies were conducted at national level [8,19–21].
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3.4. Accessibility Measures

Three types of geographic accessibility measures were identified: those using travel
time [8,19], those using distance [20–23], and one combining these two measures [18]. The
studies used different strategies to measure physical accessibility: using ArcGIS Costdis-
tance function (ESRI, Redlands, CA, USA), for a unique transport mode and a mean travel
speed [18]; using ArcGIS ModelBuilder to solve a Vehicle Routing Problem, considering
several transport modes and speeds [19], or only a single transport mode [8]; using the
Open-Source Routing Machine to compute walking distance [23]; using distance data along
transport routes where known, otherwise using a distance adjustment factor to define
them [20,22]; and finally, using Euclidean distances to determine the coverage of a health
center [21].

3.5. Referral System

Only one study does not consider referrals at all but focuses on population accessibility
to health care services [18]. Regarding the referral system, the majority of studies are
concerned with specimen referrals [8,19–22], while one study considers patient travel [24].
For studies looking at specimen referrals, one includes all levels of health centers in
their analysis [20], others link specimens from all types of health facilities to centralized
laboratories [19,21], one focuses on the transport of specimens between Point-of-Care and
centralized laboratories [8], while the latter is concerned with referrals from community
centers to general hospitals [22]. The publication involving patient travel implies patient
reference from their usual General Practitioner to another GP location or to pharmacies [23].

Several publications propose a motorbike as a mode of transport [8,18,20]. Two studies
include several modes of transport [19,22], one only includes walking [23], and the last one
does not include any specified mode of transport [21].
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3.6. Optimization Goal

In over half of the studies, accessibility measures are used as an input for cost calcu-
lations [8,19,20,22]. These publications optimize their diagnostic networks by proposing
various scenarios, based on geospatial models, and choosing the one that maximizes cover-
age and minimizes costs (transport, or overall costs). Another study models an integrated
tiered service delivery that aims to improve the coverage of CD4 testing services, reducing
turnaround time and enabling tests cost savings [21]. Other publications use accessibility
directly for their network optimization, targeting new health center locations, with one of
the studies using the ArcGIS Location-Allocation function [23] and the other using MapInfo
and an SQL search [18].

3.7. Data Used

Several publications used a road layer, sourced either from national entities [18]
or from OpenStreetMap [23,24], or by assembling a road network [8,19,20,22]. In the
last publication [21], no specific information on road networks was used. To determine
accessibility, studies also used population distribution data [18] or centroids of densely-
populated areas [23]. Others used the test demand covered by each facility, based on
historical or current test volumes, workload, or facility capacity [8,19–22]. Finally, the
health centers and laboratories data were collected from previous surveys [8,18,19,21],
from national program registration [20,22], or from open data [23]. The main pieces of
information from the charting process are summarized in Table 1.

Table 1. Summary of information from the selected articles.

Ref. Country Disease Accessibility
Model

Referral
System

Diagnostic Network
Optimization Strategies

[18] Ghana
(sub-national) TB

Distance: along the road
network; Travel time:
Costdistance, average
20 km/h motorized tricycle

-

51 additional TB testing
health facilities located
<10 km from population:
MapInfo and SQL query.
Only study interested in
population accessibility.

[20] Lesotho
(national) TB

Travel distance: along the
road network or using a
distance adjustment factor

Sample

Diagnostic network
scenarios modelled using
Supply Chain Guru
software. The optimized
scenario is the lowest
overall cost solution that
meets all constraints.

[8] Zambia
(national) HIV VL

Travel time: ArcGIS
Network Analyst tool,
Salesman Problem

Sample

ArcGIS Location-Allocation
function, maximizing ART
POC facilities coverage and
Geospatial model that
minimizes driving time and
minimizes overall costs.

[19] Zambia
(national) HIV VL

Travel time: ArcGIS
Network Analyst tool,
Salesman Problem

Sample

ArcGIS Location-Allocation
function, and geospatial
model that maximized the
Sample Transport Network,
while minimizing the
transport cost. Two sample
transportation scenarios:
district-bounded and
borderless scenarios.
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Table 1. Cont.

Ref. Country Disease Accessibility
Model

Referral
System

Diagnostic Network
Optimization Strategies

[21] South Africa
(national) HIV Distance: Euclidean

distance (<100 km) Sample

Integrated tiered service
delivery model that ensure
CD4 testing are accessible at
health facilities within
24–48 h local turnaround
time and contain test costs.

[23] UK
(sub-national)

Lower
Respiratory

Tract Infections

Distance: along the road
network, Open-Source
Routing Machine

Population

ArcGIS Location-Allocation
function. Mathematical
model allocates C-reactive
protein testing location to
minimize the overall travel
and ensuring that patients
never have to travel more
than a predefined maximum
distance.

[22]
DRC and
Angola

(sub-national)
Onchocerciasis

Travel distance: along the
road network or using a
distance adjustment factor

Sample

DNO can help evaluate
alternate sampling
strategies to bring
opportunities for overall
cost savings.

4. Discussion

This scoping review identified only seven publications that attempted to enhance
diagnostic networks using physical accessibility. The paucity of publications may be related
to the fact that the DNO initially originated from the commercial sector, where publication
is not a driver and that the DNO field is recent in the public health. Six studies were
conducted in low- and middle-income African countries. These studies have mainly the
same optimization objectives, i.e., that health centers and their referral systems cover the
maximum percentage of the population while minimizing costs (transport, tests, or overall
costs), or simply that the population travel time to a health center with diagnostic capacity is
reduced. However, the strategies to achieve these objectives differ among studies, except for
two studies that are from the same team, and thus use the same data and geospatial model.

Studies from LMICs focus on the optimization of diagnostic networks for tuberculosis,
HIV and Neglected Tropical Diseases. The only study from a high-income country focuses
on lower respiratory tract infections. Publications from high-income countries were mostly
excluded from the scoping review due to the health diagnostics addressed. Most of them
focused on cancers, mental illnesses, strokes, or rare air pollution-related diseases, and
thus did not meet the criteria for the diagnostics covered by this review. For LMICs, a
large number of studies have been undertaken on the accessibility of health care facilities,
but without focusing on specific diagnostics. Otherwise, although diagnostics have been
analyzed, no optimization or spatial accessibility has been proposed.

Throughout our literature search, we found the Hub-and-Spoke model was often
mentioned and used to improve the health network for high-income countries. This model
consists of a health infrastructure, called a hub, offering a wide range of services and
advanced diagnostic tools, which is connected to a multitude of secondary health facilities,
offering basic services, called spokes. These networks have the advantage of being easily
adaptable, by adding spokes or identifying other hubs, and are effective and efficient as they
provide quick access to healthcare services for patients, while minimizing costs [25]. For
example, a study conducted in the Northern Territory of Australia optimized the location of
hubs, using the ArcGIS location-allocation function, and showed that the total mean travel
time of the population to access a hub service could be reduced from 25 to 19 min [26].

For LMICs, the Hub-and-Spoke model is mentioned in only four of the 40 assessed
publications but they were not selected because no optimization or accessibility measures
were proposed [27–30]. However, the implementation of this model has been successfully
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conducted in some countries [28,30]. For instance, the introduction of a centralized strategy
for Early-Infant HIV Diagnostic services has led to a reduction in the turnaround time of
46.9% and a reduction in costs of 62% [27,30]. In contrast, some countries, such as Haiti and
Ethiopia, have opted for a decentralized model for their specimen referral network, which
has also led to increased access to testing facilities and reduced turnaround times [27,29,31].
Similarly, Glencross et al. [21] have also proposed a decentralized model to optimize the
delivery service, reaching the most remote locations.

Another method used to improve access to health centers is the use of telemedicine.
This approach does not logically include accessibility measures, as it is mainly based on
remote consultations, and therefore no publications dealing with this aspect have been
retained. However, telemedicine offers advantages and, being mainly used in mental health
and recovering therapies in high-income countries [32–35], it also increases equity of access
to care for the population in LMICs. Using asynchronous teleconsultations to overcome
poor internet access in some remote areas [36], telemedicine can provide consultations
with specialists, reduce missed working days, and enhance the referral system offering
early detection and referrals to a suitable diagnosis, thus reducing costs. At the same time,
the increase of mobile phones and the creation of applications have helped to reduce the
turnaround time, by sending the diagnostic result directly to the patient’s phone, thus
eliminating the need for a return journey [37].

In general, the geospatial data used to assess physical accessibility are either in-
complete, simplified, or non-existent. Some studies define a distance radius to establish
turnaround times [21,29,30] or modelled the road network by connecting nodes and lanes
from existing information [20,38]. Even models using a road layer simplified the analyses
by using an average speed or a single transport mode [18,20,26]. To improve the accuracy
of the results, geospatial data provided by OpenStreetMap can be a good alternative when
official data do not exist or are not readily available [23]. However, maps and data from
cadastral or online sources can provide a better overview of transportation networks and
barriers to movement, and therefore can offer more accurate results. Ideally, expert infor-
mation allows one to obtain data that better reflect the reality in the field. It can provide
information on the effect of seasonality on travel time, or on travel time specific to a target
population, such as children [39] or pregnant women [13]. As a measure of overall access
to diagnostics, our seven selected studies either made use of information on test demand or
historical or current volume [8,19–21], or factored in population distribution or centroids of
densely-populated areas [18,23]. Using the population distribution and simple travel-time
catchment around health facilities, access and population coverage of the network were
computed [18]. In [23], the centroids and their associated population were used as starting
points to estimate the distance to the nearest care center and the demand, respectively.
Incidence data were used in three publications to estimate demand. However, most of the
selected studies did not use epidemiological incidence or prevalence data to get a better
sense of the potential demand for testing, as pre-existing data on test volumes or population
densities are not always the best proxies for projecting future demand.

4.1. Limitations of the Study

This scoping review on the use of physical accessibility in the optimization of diag-
nostic networks presents several limitations. Firstly, only publications written in English
were screened. Secondly, only the PubMed and Web of Science databases were used in
the selection process, potentially hindering access to articles from other sources. Finally,
although we used a large number of relevant search keywords decided on the basis of an
initial literature review and the experience of the co-authors, we may have overlooked a
keyword or missed some studies. This was hopefully mitigated by our secondary snowball
and manual searches.
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4.2. Conclusions and Future Research

Our review of the literature indicates that very few published studies targeting DNO
make use of accessibility models informed by field- or expert-based information on speed
and mode of transport of either samples or patients. This may impact on the realism of the
model results and is at odds with the growing literature that uses this type of modeling
approach for various other health services [10,40–42]. This seemingly sub-optimal use of
the recent physical accessibility models may come from the recent consideration of the
importance of data analytics in DNO [6]. It may also reflect a decoupling of the types of
geospatial tools traditionally used for optimizing supply chains (of diagnostics in this case
but it originates from the commercial sector), with the category of tools that inform health
systems strengthening and scaling up.

These gaps encourage several lines of research that could benefit the broad field of
DNO, and especially RO and its applications in LMICs. First, realistic ways of estimating
the travel times of samples within a diagnostic network could benefit from the studies
that have elicited and used national or regional expertise on the modes and speeds of
transport to optimize health systems. This information can supplement (or complement)
the database from tracked vehicles that are seldomly available in most countries. Second,
similar approaches have been used in many countries to estimate the modes and speeds
of the transport used by the population travelling to a health service. This information
could be used by adjusting it for the target population linked to the diagnostics of inter-
est. Coupled with recent high-resolution population distribution maps (e.g., data sets
from worldpop.org, [43]), estimated population catchments around points of care can be
modelled, which could provide better information about estimates of the demand for diag-
nostics. Third, epidemiological data on disease prevalence could be more widely used to
provide better information about the demand for diagnostic. A DNO could potentially give
different results if the demand side is modelled based on population alone or the epidemi-
ology of the target disease. A recent study using malaria incidence in Niger demonstrated
that this is the case when modelling the deployments of community health workers [14].
To summarize, physical accessibility modeling can improve RO by providing accurate
information on travel scenarios and times, as well as on barriers to movement. Further-
more, population accessibility to health care services can directly inform DNO by providing
information on the potential demand, which can be coupled with epidemiological data.

Finally, the future availability of easier-to-use DNO software may help democratize
their usage and their coupling with other geospatial approaches for health system opti-
mization. One promising avenue is the pilot project OptiDX [44–46], which is an online and
easy-to use DNO tool scheduled to be made freely available to African countries in 2022 to
help guide investment decisions. Coupled with open-source accessibility modelling tools
such as AccessMod [9], there is a large potential for improving the results of DNO mod-
els. This would translate into better-informed decisions for health system strengthening,
moving towards Universal Health Coverage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12010103/s1, File S1: Database search terms; Table S1:
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